Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response.

نویسندگان

  • Ji-Hong Liu
  • Kazuyoshi Nada
  • Chikako Honda
  • Hiroyasu Kitashiba
  • Xiao-Peng Wen
  • Xiao-Ming Pang
  • Takaya Moriguchi
چکیده

To clarify the involvement of the arginine decarboxylase (ADC) pathway in the salt stress response, the polyamine titre, putrescine biosynthetic gene expression, and enzyme activities were investigated in apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] in vitro callus under salt stress, during recovery after stress, and when ADC was inhibited by D-arginine, an inhibitor of ADC. Salt stress (200 mM NaCl) caused an increase in thiobarbituric acid-reactive substances (TBARS) and electrolyte leakage (EL) of the callus, which was accompanied by an increase in free putrescine content, during 7 d of treatment. Conjugated putrescine was also increased, but this increase was limited to the early stage of salt stress. Accumulation of putrescine was in accordance with induction of ADC activity and expression of the apple ADC gene (MdADC). When callus that had been treated with 200 mM NaCl was transferred to fresh medium with (successive stress) or without (recovery) NaCl, TBARS and EL were significantly reduced in the recovery treatment, indicating promotion of formation of new callus cells, compared with the successive stress treatment. Meanwhile, MdADC expression and ADC activity were also decreased in the callus undergoing recovery, whereas those of the callus under successive stress were increased. Ornithine decarboxylase (ODC) activity showed a pattern opposite to that of ADC in these conditions. D-Arginine treatment led to more serious growth impairment than no treatment under salt stress. In addition, accumulation of putrescine, induction of MdADC, and activation of ADC in D-arginine-treated callus were not comparable with those of the untreated callus. Exogenous addition of putrescine could alleviate salt stress in terms of fresh weight increase and EL. All of these findings indicated that the ADC pathway was tightly involved in the salt stress response. Accumulation of putrescine under salt stress, the possible physiological role of putrescine in alleviating stress damage, and involvement of MdADC and ADC in response to salt stress are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots.

Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are two important enzymes responsible for putrescine biosynthesis. In this study, a full-length ADC cDNA (MdADC) was isolated from apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. Meanwhile, a partial ODC (pMdODC) could be amplified only by a second RCR from the RT-PCR products, whereas a full-length ODC could not...

متن کامل

The Variation Tendency of Polyamines Forms and Components of Polyamine Metabolism in Zoysiagrass (Zoysia japonica Steud.) to Salt Stress with Exogenous Spermidine Application

To understand dynamic changes in polyamines (PAs) forms and components of polyamine metabolism in zoysiagrass (Zoysia japonica Steud.) response to salt stress with exogenous spermidine (Spd) application, two Chinese zoysia cultivars, z081 and z057, were exposed to sodium chloride stress for 2, 4, 6, and 8 days. The z057 cultivar possesses higher salinity tolerance than the z081 cultivar. Salt s...

متن کامل

Stereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture

Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...

متن کامل

Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their...

متن کامل

Ornithine: the overlooked molecule in the regulation of polyamine metabolism.

We overexpressed a mouse ornithine decarboxylase gene under the control of a constitutive and an estradiol-inducible promoter in Arabidopsis thaliana to increase our understanding of the regulation of polyamine metabolism. Of particular interest was the role of the substrate ornithine not only in the regulation of polyamine biosynthesis, but also in the accumulation of related amino acids in re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 11  شماره 

صفحات  -

تاریخ انتشار 2006